Rolling Horizon Evolutionary Algorithms for General Video Game Playing
نویسندگان
چکیده
منابع مشابه
Analysis of Vanilla Rolling Horizon Evolution Parameters in General Video Game Playing
Monte Carlo Tree Search techniques have generally dominated General Video Game Playing, but recent research has started looking at Evolutionary Algorithms and their potential at matching Tree Search level of play or even outperforming these methods. Online or Rolling Horizon Evolution is one of the options available to evolve sequences of actions for planning in General Video Game Playing, but ...
متن کاملGeneral Video Game Playing
One of the grand challenges of AI is to create general intelligence: an agent that can excel at many tasks, not just one. In the area of games, this has given rise to the challenge of General Game Playing (GGP). In GGP, the game (typically a turn-taking board game) is defined declaratively in terms of the logic of the game (what happens when a move is made, how the scoring system works, how the...
متن کاملMatching Games and Algorithms for General Video Game Playing
This paper examines the performance of a number of AI agents on the games included in the General Video Game Playing Competition. Through analyzing these results, the paper seeks to provide insight into the strengths and weaknesses of the current generation of video game playing algorithms. The paper also provides an analysis of the given games in terms of inherent features which define the dif...
متن کاملEvolving Game-Specific UCB Alternatives for General Video Game Playing
At the core of the most popular version of the Monte Carlo Tree Search (MCTS) algorithm is the UCB1 (Upper Confidence Bound) equation. This equation decides which node to explore next, and therefore shapes the behavior of the search process. If the UCB1 equation is replaced with another equation, the behavior of the MCTS algorithm changes, which might increase its performance on certain problem...
متن کاملReuse of Neural Modules for General Video Game Playing
A general approach to knowledge transfer is introduced in which an agent controlled by a neural network adapts how it reuses existing networks as it learns in a new domain. Networks trained for a new domain can improve their performance by routing activation selectively through previously learned neural structure, regardless of how or for what it was learned. A neuroevolution implementation of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Games
سال: 2021
ISSN: 2475-1502,2475-1510
DOI: 10.1109/tg.2021.3060282